Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 207: 11-16, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599991

RESUMO

The valorization of cellulose rich textile waste is promoted by the development of a novel solid-state NMR method for the quantification of cellulose and polyester in textile blends. We applied 13C CP-MAS NMR as a tool for the quantification and structural characterization of cellulose in cotton polyester blends. Gaussian functions were used to integrate the spectra obtained from a set of calibration standards in order to calculate a sigmoidal calibration curve. Acid hydrolysis was chosen as a reference method. The results demonstrated that solid-state NMR enables a reliable determination of cellulose and polyester in both preconsumer and postconsumer waste textiles and suggests a possible extension of the concept to blends of man-made cellulose fibers (MMCFs) and polyester.


Assuntos
Celulose/análise , Resíduos Industriais/análise , Poliésteres/análise , Têxteis , Calibragem , Celulose/química , Fibra de Algodão/análise , Hidrólise , Espectroscopia de Ressonância Magnética/métodos
2.
Eur J Pharm Sci ; 121: 260-268, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29883725

RESUMO

The present study introduces a modified melt-electrospinning (MES) method for fabricating the melt-electrospun fibers (MSFs) of a poorly water-soluble drug and carrier polymer. The MES of poorly water-soluble model drug indomethacin (IND) and hydrophilic carrier polymer, Soluplus® (SOL) were prepared at a 1:3 drug-polymer weight ratio. Water was used as an external plasticizer to regulate a MES processing temperature and to improve fiber formation. The fiber size, surface morphology, physical solid state, drug-polymer (carrier) interactions, thermal and chemical stability and dissolution behavior of MSFs were investigated. Solid state nuclear magnetic resonance spectroscopy (NMR) was used to measure T1(1H), and the domain size of IND in MSFs (25-100 nm) was calculated from these results. Solid-state and thermal analysis confirmed the presence of amorphous solid dispersions of IND and SOL. IND was found to be chemically stable during an entire MES process. Only small drug content variability of different MSF batches was detected with high performace liquid chromatography (HPLC). Given findings were verified with the liquid NMR spectroscopy. The dissolution of MSFs was significantly faster than that of physical mixtures (PMs) or pure drug. The enhanced dissolution of MSFs was caused by high surface area, amorphous state of the drug and solubilizing properties of the carrier polymer (SOL).


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Indometacina/química , Polietilenoglicóis/química , Polivinil/química , Solubilidade , Água/química
3.
Carbohydr Polym ; 113: 67-76, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256460

RESUMO

In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.


Assuntos
Compostos Azabicíclicos/química , Celulose/química , Imidazóis/química , Líquidos Iônicos/química , Termodinâmica , Calorimetria , Microscopia , Solubilidade
4.
Pharm Res ; 29(10): 2684-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22203327

RESUMO

PURPOSE: To study how water plasticization affects the molecular mobility and crystallization tendency of freeze-dried trehalose, sucrose, melibiose and cellobiose. METHODS: Freeze-dried disaccharides were subjected to different relative humidity atmospheres and their physical stabilities were evaluated. Lyophilizate water sorption tendencies and glass transition temperatures were modeled using Brunauer-Emmett-Teller (BET) and Gordon-Taylor (GT) equations, respectively. Sucrose and cellobiose crystallization tendencies were compared by using the concept of reduced crystallization temperature (RCT), and the molecular mobilities of trehalose and melibiose were compared by measuring their T(1)H relaxation time constants. RESULTS: Based on the BET and GT models, water sorption tendency and the resulting plasticizing effect were different in sucrose when compared to the other disaccharides. Trehalose and melibiose exhibited generally slower crystallization rates when compared to sucrose and cellobiose. Amorphous melibiose was shown to be particularly stable within the studied water content range, which may have partly been caused by its relatively slow molecular mobility. CONCLUSIONS: Slow amorphous-to-crystalline transition rate is known to be important for lyoprotecting excipients when formulating a robust drug product. The physical stabilities of amorphous trehalose and melibiose even with relatively high water contents might make their use advantageous in this respect compared to sucrose and cellobiose.


Assuntos
Dissacarídeos/química , Plastificantes/química , Água/química , Absorção , Cristalização , Armazenamento de Medicamentos , Liofilização/métodos , Umidade , Temperatura de Transição
5.
AAPS PharmSciTech ; 12(2): 637-49, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21560022

RESUMO

The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP-MAS (13)C nuclear magnetic resonance (NMR), X-ray powder diffraction (XRPD), differential scanning calorimetry, and Fourier transform infrared spectrometry (FTIR) and near-infrared spectroscopy. The morphology of spray-dried chitosan acid salts showed tendency toward higher sphericity when higher temperatures in a spray-drying process were applied. Analysis by XRPD indicated that all chitosan acid salts studied were amorphous solids. Solid-state (13)C NMR spectra revealed the evidence of the partial conversion of chitosan acetate to chitin and also conversion to acetyl amide form which appears to be dependent on the spray-drying process. The FTIR spectra suggested that the organic acids applied in spray drying may interact with chitosan at the position of amino groups to form chitosan salts. With all three chitosan acid salts, the FTIR bands at 1,597 and 1,615 cm(-1) were diminished suggesting that -NH groups are protonated. The FTIR spectra of all chitosan acid salts exhibited ammonium and carboxylate bands at 1,630 and 1,556 cm(-1), respectively. In conclusion, spray drying is a potential method of preparing acid salts from chitosan obtained by deacetylation of chitin from lobster (P. argus) origin.


Assuntos
Ácido Acético/química , Química Farmacêutica/métodos , Quitosana/química , Ácido Láctico/química , Ácido Acético/normas , Animais , Química Farmacêutica/normas , Quitosana/isolamento & purificação , Quitosana/normas , Ácido Láctico/normas , Palinuridae , Tamanho da Partícula , Sais/química , Sais/normas
6.
Eur J Pharm Sci ; 36(4-5): 412-20, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19059479

RESUMO

In the present study, the solid-state stability and the dissolution of glucagon/gamma-cyclodextrin and glucagon/lactose powders were evaluated. Freeze-dried powders were stored at an increased temperature and/or humidity for up to 39 weeks. Pre-weighed samples were withdrawn at pre-determined intervals and analyzed with HPLC-UV (HPLC=high performance liquid chromatography, UV=ultraviolet), HPLC-ESI-MS (ESI-MS=electrospray ionization mass spectrometry), SEC (size-exclusion chromatography), turbidity measurements and solid-state FTIR (Fourier Transform Infrared Spectroscopy). Dissolution of glucagon was evaluated at pH 2.5, 5.0 and 7.0. In addition, before storage, proton rotating-frame relaxation experiments of solid glucagon/gamma-cyclodextrin powder were conducted with CPMAS ((13)C cross-polarization magic-angle spinning) NMR (nuclear magnetic resonance) spectroscopy. In the solid state, glucagon was degraded via oxidation and aggregation and in the presence of lactose via the Maillard reaction. The solid-state stability of glucagon/gamma-cyclodextrin powder was better than that of glucagon/lactose powder. In addition, gamma-cyclodextrin improved the dissolution of glucagon at pH 5.0 and 7.0 and delayed the aggregation of glucagon after its dissolution at pH 2.5, 5.0 and 7.0. There was no marked difference between the proton rotating-frame relaxation times of pure glucagon and gamma-cyclodextrin, and thus, the presence of inclusion complexes in the solid state could not be ascertained by CPMAS NMR. In conclusion, when compared to glucagon/lactose powder, glucagon/gamma-cyclodextrin powder exhibited better solid-state stability and more favorable dissolution properties.


Assuntos
Estabilidade de Medicamentos , Glucagon/química , gama-Ciclodextrinas/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Colloid Polym Sci ; 284: 1255-1263, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-24058235

RESUMO

Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin-lattice (T1) and spin-spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...